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To provide physical insight into the recently observed photoluminescence saturation behavior in single-
walled carbon nanotubes implying the existence of an upper limit of exciton densities, we have performed a
time-dependent theoretical study of diffusion-limited exciton-exciton annihilation in the general context of
reaction-diffusion processes, for which exact treatments exist. By including the radiative recombination decay
as a Poissonian process in the exactly solvable problem of one-dimensional diffusion-driven two-particle
annihilation, we were able to correctly model the dynamics of excitons as a function of time with different
initial densities, which in turn allowed us to reproduce the experimentally observed photoluminescence satu-
ration behavior at high exciton densities. We also performed Monte Carlo simulations of the purely stochastic,
Brownian diffusive motion of one-dimensional excitons, which validated our analytical results. Finally, by
considering the diameter, chirality, and temperature dependence of this diffusion-limited exciton-exciton anni-
hilation, we point out that high exciton densities in single-walled carbon nanotubes may be achieved at low
temperature in an external magnetic field.
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I. INTRODUCTION

Excitons in single-walled carbon nanotubes �SWNTs� are
stable quasiparticles with large binding energies and signifi-
cantly influence their interband optical properties.1 However,
they have been reported to be rather efficiently eliminated at
high densities through the exciton-exciton annihilation
�EEA� process,2 although their emission and absorption en-
ergies remain stable even at high densities.3 Recently, the
intensity of photoluminescence �PL� from SWNTs was found
to saturate at high pump fluence, implying the existence of
an upper limit in the density of excitons, which was esti-
mated to be an order of magnitude smaller than the expected
Mott density4 �the density at which the interexciton distance
becomes comparable to the Bohr radius5�. The existence of
such an upper limit, which poses a significant hindrance in
the observation of lasing, a Mott transition, or excitonic
Bose-Einstein condensation in SWNTs, was attributed to ef-
ficient EEA facilitated by the diffusive motion of excitons in
agreement with previous claims.6–8

The dynamics of diffusion-limited EEA can be analyzed
in the general context of reaction-diffusion processes, which
have been extensively studied by physicists, chemists, biolo-
gists, and ecologists and serve as simple models for studying
a variety of nonequilibrium problems.9–13 Moreover, it has
been shown that such simple diffusion-driven reactions ex-
hibit interesting nonequilibrium phase transitions and univer-
sality classes,14 with connections to many-body theory.15,16

In such models, particles, or “agents,” of one or more species
execute random walk in d dimensions �where d could also be
fractional in the case of fractal geometry� and undergo reac-
tions upon collisions, leading to changes in their population
often accompanied by an appearance and disappearance of
various phases. Such systems often exhibit rich phase dia-
grams that can be fully studied with numerical simulations
even when analytical solutions are not available. For ex-
ample, a widely studied reaction is the two-particle annihila-

tion given by A+A→0, where the interaction is assumed to
be of the “hard-core” type, leading to the mutual destruction
of two particles upon collision.10 Starting with an initial
population N0, one can analyze the ensemble averaged popu-
lation Nt at a given time t. Clearly, this is a nonequilibrium
many-particle process that is driven by noise, and its only
steady state is achieved when the population vanishes.

An interesting feature of diffusion-driven reactions is the
presence of spatio-temporal fluctuations in such processes
that cannot be ignored especially at lower dimensions and
lead to the breakdown of mean-field type assumptions. For
example, diffusion-driven two-particle annihilation can be
written in differential form as follows:10

�t�n�x,t�� = D�2�n�x,t�� − �n2�x,t�� , �1�

where �.� stands for an ensemble average. The first term on
the right denotes the diffusion process, while the second term
is for two-particle annihilation and thus has quadratic depen-
dence. Note that the annihilation term has an average of
n2�x , t� whereas mean-field theory will simplify this to
�n�x , t��2, thus neglecting fluctuations of the form
�n2�x , t��− �n�x , t��2. In one dimension, the population as-
ymptotically decays as t−1/2 power law whereas the mean-
field theory, which ignores fluctuations, predicts a faster de-
cay of t−1. This discrepancy originates from the fact that
d-dimensional diffusion with d�2 is recurrent and the par-
ticles return to their previous position with high
probability.17 Hence, the reaction is slowed down leading to
a smaller exponent in the power-law decay. Indeed, the
mean-field result is recovered in three dimensions, which is
above the critical dimension dc=2 for this problem.18 Thus,
an exact treatment of the dynamics of even such a simple
process requires the inclusion of correlations.

II. MODEL DETAILS

In this paper, motivated by the recent experimental obser-
vation of an upper limit in the density of excitons,4 we un-

PHYSICAL REVIEW B 79, 205407 �2009�

1098-0121/2009/79�20�/205407�7� ©2009 The American Physical Society205407-1

http://dx.doi.org/10.1103/PhysRevB.79.205407


dertake a time-dependent study of a one-dimensional
diffusion-limited EEA process in the presence of radiative
decay. In our model, we assume that an initial population of
N0 pairs of excitons is created along the nanotube of length L
under the excitation of an ultrashort laser pulse of sufficient
photon energy. We further assume that the laser excitation
spot is larger than L, leading to the creation of excitons that
are randomly distributed along the nanotube. After the laser
pulse is gone, the excitons start diffusive motion along the
nanotube, possibly arising from random collisions with
phonons.8 We treat excitons as point particles that execute
one-dimensional random walk along the length of the nano-
tube and undergo annihilation upon crossing each other. In
reality, excitons have a finite spatial extent given by their
Bohr radius, aB, which is expected to be �1–1.5 nm for
nanotubes with diameter �1 nm.19 Thus, our treatment of
excitons as point-particles is valid when the interexciton dis-
tance is greater than aB, or in other words, when the exci-
tonic density is below the Mott density. In addition to the
decay via EEA, the exciton population decays radiatively
with a lifetime �r.

We consider the following two coupled and competing
reaction-diffusion processes in one dimension �1D� to model
the dynamics of excitons in nanotubes at various densities,

A + A → kA �k = 0,1� , �2a�

A→
�r

B , �2b�

where A represents excitons and B photons. The first equa-
tion represents exciton-exciton annihilation, which is either
complete �k=0� or partial �k=1�, while the second reaction is
just the radiative decay of excitons with radiative lifetime
�r=1 /�r. It is noteworthy that only the first reaction is
diffusion-driven whereas as the radiative decay takes place
independently. In this sense, there are two temporal noise
terms—the annihilation reaction is driven by diffusive noise,
which we assume to be of the Gaussian form, whereas the
radiative decay is governed by a Poissonian noise and,
hence, is a pure jump process. We do not include any other
nonradiative processes in our model but it is straightforward
to include them by simply replacing �r with an effective
lifetime � as long as they also follow Poissonian statistics.
The rate of creation of photons �B� would then decrease by a
factor equal to the branching ratio of the radiative and the
nonradiative processes. We consider a simple diffusion pro-
cess in which the diffusion constant D is independent of the
spatial and temporal coordinates. Furthermore, the length of
the nanotube L is assumed to be much larger than the exci-
tonic dimension.

We are interested in determining the population of both
species as a function of time. The population of species B, or
photons, is proportional to the PL intensity measured experi-
mentally. In particular, we wish to know the fraction of
population which decays radiatively and how this fraction
changes as the initial population is increased. As one can
imagine, upon increasing the initial density of excitons in the
1D nanotube the annihilation reaction becomes more effi-
cient whereas the radiative decay rate can be safely assumed

to be independent of the density. As we show later, this leads
to saturation of the PL intensity as the initial population den-
sity is increased, which is consistent with the experimental
observations.4

In Sec. IV, we compare our results to that of the recent
experimental observation of PL saturation4 and find excellent
quantitative agreement. In our generic model, which applies
to any one-dimensional system, the only physical parameters
are the interexciton distance d0=L /2N0, the diffusion con-
stant D, and the radiative lifetime �r. However, to interpret
our results in terms of carbon nanotube parameters such as
diameter, chirality, and other excitonic energy scales, we
need to consider the dependence of our model parameters on
them. This is done in Sec. V along with a discussion on the
effect of temperature on the EEA process. In Sec. III, we
obtain analytical results for the populations of excitons and
photons as a function of time using the first-passage time
distribution of Brownian motion and compare them to nu-
merical simulations done using the Monte Carlo technique.

III. SOLUTION USING FIRST-PASSAGE
DISTRIBUTION

The case of two-particle annihilation without the radiative
decay has been extensively studied, and exact results for the
population as a function of time are known.20–23 In the con-
text of carbon nanotubes, there have been a few studies on
carrier and exciton dynamics in the presence of Auger ion-
ization and radiative decay, involving solutions of master
equation for the time-dependent occupation probability.24,25

Here we use the first-passage time distribution of Brownian
motion to first study the annihilation reaction without decay.
We recover the exact analytical results for this case before
proceeding to include the radiative decay term. We begin by
deriving the exact result for a single pair, or the “independent
pairs” case, and use it to obtain an approximate solution for
the many-particle, or the “correlated” case. Monte Carlo
simulations are performed to check the validity of our re-
sults. This purely stochastic method employing the first-
passage time distribution is a simple and natural way to
study the annihilation reaction as the collisions which drive
the reactions must obey such distributions.

A. Annihilation without decay; k=0

Consider N0 pairs of species A randomly arranged on a
line of length L and executing Brownian diffusion with dif-
fusion constant D. Let us first consider just the two-particle
annihilation process without the decay as in Eq. �2a� with
k=0. Let nA�t� denote the average fraction of initial popula-
tion which is still “alive” at time t. We keep the discussion in
this section as general as possible without explicitly identi-
fying species A or B unless absolutely required.

In 1D, only the nearest neighbors at any given time can
undergo annihilation due to restrictions placed by lower di-
mensionality. This prompts us to first consider the case for a
single pair of particles and generalize the result to the many-
particle case. As this is equivalent to different pairs annihi-
lating independently of each other, we refer to it as the “in-
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dependent pair” case. Let d0 be the initial distance between
the pair and P�d0 , t� denote the survival probability of this
pair at time t. To calculate P�d0 , t�, we need to find the prob-
ability that a pair with initial distance d0 does not undergo
collision until time t. As both particles are executing inde-
pendent Brownian motion, their relative motion is also
Brownian with diffusion constant 2D which starts at d0.
Thus, we need to find the probability that a Brownian motion
starting at d0 does not reach zero until time t. This can be
readily found from the first-passage time distribution of a
Brownian motion as26

P�d0,t� = erf� d0

2�Dt
� , �3�

where erf�.� is the error function. For the independent pair
case, the fraction of population that is alive at time t, nA�t�,
reads

nA�t� = 	
i=1

N0

erf� d0,2i

2�Dt
� = 	

i=1

N0

erf�d0,2i−1

2�Dt
� , �4�

where the distance between the particles of the ith pair is d0,i
at time t=0. We have imposed a periodic boundary condition
making the line into a ring without any loss of generality. As
N0 tends to infinity, the above sum can be expressed as an
integral over the distribution of d0,is. We restrict ourselves to
the case when the particles are randomly arranged on the line
at t=0. Thus, d0,is which are the distances between pairs can
be thought of as the “waiting times” for a Poisson process
and have an exponential distribution spatially along the
nanotube with mean d0=L /2N0.

For the many-particle case we realize that there are twice
as many ways for a pair to annihilate as for the independent
case due to the presence of two nearest neighbors for each
particle, and hence, the mean distance for the correlated case
is just a half of the independent case in the large N0 limit. For
this limit, the exact result can be obtained as

nA�t� = 

0

�

dx� exp�− �x�erf� x

2�Dt
�

= exp��2Dt�erfc���2Dt� , �5�

which is the result of Torney et al.20 with �=4N0 /L. In the
asymptotic limit, Eq. �5� yields a power-law decay of t−1/2 as
mentioned earlier.

At long times the initial correlations between the particles
are completely wiped out, and this power-law decay is ex-
pected, irrespective of the initial distribution of particles.
Such a power-law behavior has been recently observed in
time-resolved transient absorption measurements on
SWNTs.7

B. Annihilation with decay; k=0: Independent pair case

Next, we include radiative decay of Eq. �2b� in our model
and compute the population fraction of species A and B as a
function of time. As before, we first derive the exact result
for the case of a single pair and use it as a kernel to express
the result for independent pairs uniformly distributed along

the tube. For a single pair separated by a distance d0 at
t=0, the surviving population fraction at t can be simply
written as

nA�t� =
1

2 	 np�n,t� �n = 0,1,2� , �6�

where p�n , t� denotes the probability of n surviving particles
at time t, which remains to be calculated. Let us compute
p�2, t�, which is the probability that both particles compris-
ing the pair are alive at time t. Such a case is possible only if
neither particle undergoes radiative decay or collision until
time t. As the radiative decay of particles occurs indepen-
dently of one another and also of the diffusion-driven colli-
sion, we can simply multiply the individual probabilities to
get

p�2,t� = exp�− 2�rt�erf� d0

2�Dt
� . �7�

Recall that radiative decay is a Poisson process with param-
eter �r and the probability of it not happening until time t is
exp�−�rt�. To compute p�1, t�, which is the probability that
exactly one particle out of the pair survives, we realize that
such a scenario is possible only if there is exactly one radia-
tive decay in the time interval �0, t�, say at t=�, and no
collision before �. As in the interval �� , t� collisions cannot
take place due to an insufficient number of particles for the
reaction, we only include the probability of collision not tak-
ing place before �. The probability that either of the particles
decay in an infinitesimal interval d� about � is 2�rd�. As
before, we can multiply the probabilities for each subevent
due to mutual independence. Thus,

p�1,t� = 

0

t

exp�− 2�r��erf� d0

2�D�
�

��2�rd��exp�− 2�r�t − ��� . �8�

From Eqs. �6�–�8�, nA�t� for a single pair can be obtained. As
before, for the case of N0 independent pairs, we average
nA�t� over an exponential distribution with mean d0=L /2N0.
After some straightforward but tedious algebra we obtain

nA�t� =
exp�− �rt�

1 − �

exp�1 − �

�
�rt�erfc���rt/��

+ �� erf���rt� − �� , �9�

where we have introduced a dimensionless parameter �
=�D /�r with �D being the “diffusional time” d0

2 /D. We em-
phasize that this is an exact result for the case of indepen-
dently colliding pairs that also undergo radiative decay. The
above equation is valid only when �	1, or, in other words,
when radiative decay is slower. In the limit of extremely
dilute initial population density, no annihilation can take
place, and only radiative decay occurs. nA�t� would be sim-
ply exp�−�rt� in that case. In the opposite limit when radia-
tive decay rate �r vanishes, Eq. �9� indeed recovers the result
of Eq. �5�, as expected.
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Figure 1 compares the result of Eq. �9� with Monte Carlo
simulations, done by simulating the Brownian diffusive mo-
tion of each independent pair of particles, validating our re-
sults. As � is the only physical parameter in the problem,
changing d0 and D but keeping � constant should not alter
the result, which was indeed confirmed by simulations. This
fact should remain true even for the case of correlated pairs.

Let us consider the behavior of nA�t� in the long and short
time limits. For t
1, only the radiative decay should domi-
nate as the density of particle becomes too low to participate
in annihilation. Thus, an exponential decay is expected. Tak-
ing limits explicitly, one obtains

nA�t → �� =
exp�− �rt�
1 + 1/��

. �10�

As � is less than unity, so is the intercept of the above expo-
nential decay, hinting at the superexponential decay at short
times due to annihilation. In the short time limit, when
�	1 one expects only annihilation to dominate the decay,
and one gets

nA�t → 0� = 1 − 2��rt/�� . �11�

which is indeed faster than an exponential decay as t→0.
Indeed, Fig. 1 confirms these findings. As the time
progresses, the density of particles decreases due to decreas-
ing population, which slows down the annihilation reaction
as it strongly depends on the density of the particles. The
radiative decay rate, on the other hand, is fixed, and thus, a
crossover from annihilation dominated decay to a purely ex-
ponential radiative decay is expected. It can be defined to
take place when dt=L /2N0nA�t� becomes equal to �. This
time �� is implicitly given as

nA���� = �� . �12�

As the initial density is increased, �� decreases and finally
vanishes at very high density, implying a purely exponential
decay at all times.

In order to calculate nB�t�, we note that at any given time
the rate of radiative decay is proportional to the instanta-
neous population of A, nA�t�. In other words,

�tnB�t� = �rnA�t� . �13�

Hence, nB�t� can be obtained from Eq. �9�, upon direct inte-
gration, as

nB�t� = �r

0

t

d�nA��� . �14�

In particular, the fraction of total population that decays ra-
diatively is given by

nB��� =
1

1 + 1/�2�
. �15�

The study of independent pair model identifies the relevant
parameters of the process and the scaling relationships they
must obey. It also provides the decay regimes that are rel-
evant for each type of reaction viz., annihilation and radia-
tive decay. The use of purely stochastic first-passage time
distribution makes the solution transparent and simple, rely-
ing on the properties of diffusion rather than other formal
methods, which although more general are less intuitive.

C. Annihilation with decay; k=0: Correlated pair
case

As for the case of no decay, we scale the mean separation
between the particles by a factor of 2 in order to obtain a
solution for the correlated case. This approximate solution
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FIG. 1. �Color online� Comparison of Monte Carlo simulations
�solid line� and exact analytical result �dashed line� for the k=0,
“independent” case with radiative decay �Eq. �9��. The fraction of A
�panel �a�� and B �panel �b�� populations is plotted as a function of
dimensionless time Dt /d0

2. The values of D=0.8 cm2 /s and
�r=100 ps were taken from previously reported experimental re-
sults �Ref. 8� while d0 was set to 20 nm ��=0.05� corresponding to
an initial density of 5�105 cm−1.
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FIG. 2. �Color online� Comparison of Monte Carlo simulations
�solid line� and approximate analytical result �dashed line� for
k=0 “correlated pair” case with radiative decay �Eq. �9��. �a� The
population fraction of A �a� and B �b� as a function of “dimension-
less” time. Approximate result agrees fairly well with the simula-
tions. The parameters for simulations are the same as in Fig. 1
except with d0=10 nm ��=0.025�. Some reasons for disagreement
with the simulations are discussed in the text.
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and the Monte Carlo simulations for the correlated case are
compared in Fig. 2. The approximate solution agrees well
with the simulations. A possible reason for the slower decay
of analytical result compared to the exact result could be the
following: for the single pair case, if one of the particle de-
cays before undergoing collision, the remaining particle must
decay radiatively and cannot undergo annihilation. However,
for the correlated case, this is not true as long as there are
other neighboring particles and so annihilation becomes pos-
sible.

D. Annihilation with/without decay; k=1

The case of partial annihilation �k=1 in Eq. �2a�� can be
understood in terms of the results for k=0. Both processes
are completely identical besides the fact that the annihilation
in k=1 is half as slow as the k=0 case. Consequently, if the
initial density for the partial annihilation case is twice as
much as the complete annihilation case, one expects the two
decays to be identical. Thus, the result for the k=1 case can
be obtained from Eq. �5� by replacing d0 with d0 /2. Even in
the presence of radiative decay, the above argument should
be true as the radiative decay occurs completely indepen-
dently of the annihilation reaction. We verify this heuristic
reasoning by Monte Carlo simulations, as shown in Fig. 3.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

We use Eq. �15� to calculate the density of species B, or
photons created as a function of initial density of species A,
or excitons. In terms of experimental parameters, the density
of photons created is proportional to the measured PL inten-
sity while the initial density of excitons is proportional to the
fluence of the pump laser. A saturation behavior in the PL
intensity is seen with increasing density of excitons as shown
in Fig. 4.

It is interesting to note that the only physical parameters
of importance in our model are D and �r, which can be

combined to give an “exciton diffusion length” lD=�D�r. In
Fig. 4, we chose lD=90 nm so as to quantitatively compare
our results with the experimental results of Murakami
and Kono,4 who report a saturation photon density
of �1.7�105 cm−1 for an initial exciton density of
1–2�106 cm−1 in a �6,5� nanotube at room temperature.
These numbers are in excellent agreement with our
model which predicts a saturation photon density of
�1.5�105 cm−1 at similar initial exciton densities as shown
in Fig. 4.

Thus, we see that a new length scale, lD, arises in the
presence of diffusion-driven EEA, which should be com-
pared to other length scales such as d0 and aB. When the
initial density of created excitons is low, or in other words,
d0 is large compared to lD, EEA is not very effective and we
see a linear increase in PL with increasing exciton density, as
shown in Fig. 4. Moreover, as long as the Bohr radius of the
excitons, aB, is much smaller than lD, it becomes irrelevant in
our model. This is indeed the case for the experiments of
Murakami and Kono, where lD�90 nm while aB�1.5 nm.
As expected from the relative length scales, the Mott density
in the above case �7�106 cm−1� is about 2 orders of mag-
nitude larger than the saturation density, and hence the Mott
density is not sustained due to efficient EEA.

V. DIAMETER, CHIRALITY, AND TEMPERATURE
DEPENDENCE

In this section we discuss the dependence of the EEA
process on nanotube parameters such as diameter �dt� and
chirality and external parameters such as temperature and
magnetic field. As mentioned in Sec. III, the only relevant
physical parameters in our model are the diffusion constant
D and the radiative lifetime �r which enter as the diffusion
length lD, besides the experimentally controllable quantity,
d0. Thus, any dependence of EEA on the parameters of nano-
tubes such as the diameter and chirality on EEA enters im-
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FIG. 3. �Color online� Comparison of k=1 �solid line� and
k=0 �dashed line� for different values of d0 �in nm� for the “corre-
lated” case with radiative decay. �a� The population fraction of A �a�
and B �b� as a function of dimensionless time. d0 values for k=1
case simulations are half of the k=0 case shown on the graph�. Rest
of the parameters are the same as in Fig. 1.
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the saturation behavior in PL intensity predicted by our model. The
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chosen to enable direct comparison with the experimental results of
Murakami and Kono �Ref. 4� �see text for details�.
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plicitly through the dependence of lD on them.
The diffusion constant D can be approximated through the

Einstein relation,

D =
kBT

M�
, �16�

where M is the mass of the exciton and � is the exciton-
phonon scattering rate. For nanotubes, the phonon scattering
rate is given in terms of the deformation potential 
 as27

� =
�2MkBT
2F�c

�2�vL
2 , �17�

where � is the linear mass density proportional to the diam-
eter dt, vL is the longitudinal sound velocity. The chirality
dependence is contained in F�c

as27

F�c
= �1 + �P�2 cos2�3�c� + �vL

vT
sin2�3�c�� , �18�

where �P is Poisson’s ratio, �c is the chiral angle, and vT is
the transverse sound velocity. Thus,

D � dt
5/2T1/2, �19�

assuming that the exciton mass approximately varies in-
versely with the diameter.28

The radiative lifetime �r of excitons in nanotubes exhibits
nontrivial dependence on the temperature and diameter due
the presence of optically inactive or “dark” excitonic states
that are energetically lower than the optically active or
“bright” excitonic states.29,30 This dependence is given as30,31

�r � dt
3T exp� A

dt
2T

− 1� . �20�

Here, A depends on the singlet dark-bright splitting energy
and is related to the temperature at which the radiative decay
rate attains its maximum.30

Combining Eqs. �19� and �20�, we get the dependence of
lD as

lD � T0.75dt
2.75 exp� A

2dt
2T

− 0.5� . �21�

The effect of the exponential term in Eq. �21� is to cause an
increasing trend in lD below a certain temperature or diam-
eter depending on the value of A, thereby making EEA fa-
vorable. In addition, due to the chirality dependence of both
D and �r,

30 lD is expected to show alternating behavior aris-
ing from the possible values of mod�n−m ,3�. Thus, the EEA
process, which is characterized by lD, decreases sharply with
the diameter of the nanotube until a critical value is reached.
Likewise, the EEA process is expected to slow down with
decreasing temperature until a transition temperature �T��,
depending on the value of A, is reached. This nonmonotonic
behavior of EEA stems from the unique temperature depen-
dence of �r of excitons in nanotubes. On the other hand, the
�r of a single 1D exciton band is predicted to scale as32 T1/2,
leading to lD also being proportional to T1/2. Hence, EEA
would monotonically slow down in such a case.

By applying symmetry breaking perturbations such as a
magnetic field to the nanotubes, the dark state can be
brightened,33,34 restoring this temperature dependence, and
making the attainment of higher excitonic densities possible.
Under such conditions, it may be possible to attain the Mott
density of excitons in carbon nanotubes. The temperature
dependence of lD for the case of nanotubes with the dark
excitonic state lying at a lower energy than the bright exciton
is compared with the case of single 1D exciton band in Fig.
5, showing an increasing trend in lD below T� for the former
case. The value of T�, as mentioned earlier, is sensitive to the
dark-bright splitting. Sustaining high densities of excitons is
the first step for any lasing applications and for observing
excitonic Bose-Einstein condensation in carbon nanotubes.
In addition, at lower temperatures, exciton localization due
to impurity traps or defects could completely stop the diffu-
sive motion of excitons,35 further enabling the attainment of
the Mott density.

Finally, in our model, we have assumed a completely ran-
dom motion of excitons, which leads to ordinary diffusion
based on a Gaussian kernel. This assumption can also break
down at lower temperatures or in other scenarios when D
becomes position or density dependent, leading to anoma-
lous diffusion and changing the time dependence of excitonic
population. A time-resolved experiment, probing the exci-
tonic or the photon population at different temperatures, ex-
citon densities, and magnetic fields, cannot only verify the
validity of this model but also provide further insight into the
EEA process in carbon nanotubes.

VI. SUMMARY

To provide physical insights into the recently observed
photoluminescence saturation behaviors in single-walled car-
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FIG. 5. �Color online� A schematic plot depicting the tempera-
ture dependence of exciton diffusion length, lD, for the case of
nanotube with lowest energy excitonic state being optically inactive
or “dark” �solid line, Eq. �21���; and for a single 1D exciton band
showing T1/2 dependence �dashed line�. The value of T� in the plot
is chosen such that it corresponds to a dark-bright splitting
�5.5 meV for a nanotube with dt�1 nm �Ref. 30�. It is further
assumed that the values of lD for the two cases are the same at 300
K.
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bon nanotubes, we studied the diffusion and two-particle an-
nihilation of one-dimensional excitons in the general context
of reaction-diffusion processes, for which exact treatments
exist. By including the radiative recombination decay as a
Poissonian process in the exactly solvable problem of one-
dimensional diffusion-driven two-particle annihilation, we
were able to correctly simulate the density of excitons in
single-walled carbon nanotubes as a function of time and
density. Monte Carlo simulations were also performed by
simulating the purely stochastic, Brownian diffusive motion
of one-dimensional excitons, validating our results. Finally,

we discussed the diameter, chirality, and temperature depen-
dence of EEA.
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